Low rank subspace clustering (LRSC)
نویسندگان
چکیده
We consider the problem of fitting a union of subspaces to a collection of data points drawn from one or more subspaces and corrupted by noise and/or gross errors. We pose this problem as a non-convex optimization problem, where the goal is to decompose the corrupted data matrix as the sum of a clean and self-expressive dictionary plus a matrix of noise and/or gross errors. By self-expressive we mean a dictionary whose atoms can be expressed as linear combinations of themselves with low-rank coefficients. In the case of noisy data, our key contribution is to show that this non-convex matrix decomposition problem can be solved in closed form from the SVD of the noisy data matrix. The solution involves a novel polynomial thresholding operator on the singular values of the data matrix, which requires minimal shrinkage. For one subspace, a particular case of our framework leads to classical PCA, which requires no shrinkage. For multiple subspaces, the low-rank coefficients obtained by our framework can be used to construct a data affinity matrix from which the clustering of the data according to the subspaces can be obtained by spectral clustering. In the case of data corrupted by gross errors, we solve the problem using an alternating minimization approach, which combines our polynomial thresholding operator with the more traditional shrinkage-thresholding operator. Experiments on motion segmentation and face clustering show that our framework performs on par with state-of-the-art techniques at a reduced computational cost. ! 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Projective Low-rank Subspace Clustering via Learning Deep Encoder
Low-rank subspace clustering (LRSC) has been considered as the state-of-the-art method on small datasets. LRSC constructs a desired similarity graph by low-rank representation (LRR), and employs a spectral clustering to segment the data samples. However, effectively applying LRSC into clustering big data becomes a challenge because both LRR and spectral clustering suffer from high computational...
متن کاملGlobal Solver and Its Efficient Approximation for Variational Bayesian Low-rank Subspace Clustering
When a probabilistic model and its prior are given, Bayesian learning offers inference with automatic parameter tuning. However, Bayesian learning is often obstructed by computational difficulty: the rigorous Bayesian learning is intractable in many models, and its variational Bayesian (VB) approximation is prone to suffer from local minima. In this paper, we overcome this difficulty for low-ra...
متن کاملLaplacian regularized low rank subspace clustering
The problem of fitting a union of subspaces to a collection of data points drawn from multiple subspaces is considered in this paper. In the traditional low rank representation model, the dictionary used to represent the data points is chosen as the data points themselves and thus the dictionary is corrupted with noise. This problem is solved in the low rank subspace clustering model which deco...
متن کاملLearning Transformations for Clustering and Classification Learning Transformations for Clustering and Classification
A low-rank transformation learning framework for subspace clustering and classification is here proposed. Many high-dimensional data, such as face images and motion sequences, approximately lie in a union of low-dimensional subspaces. The corresponding subspace clustering problem has been extensively studied in the literature to partition such highdimensional data into clusters corresponding to...
متن کاملSubspace clustering based on low rank representation and weighted nuclear norm minimization
Subspace clustering refers to the problem of segmenting a set of data points approximately drawn from a union of multiple linear subspaces. Aiming at the subspace clustering problem, various subspace clustering algorithms have been proposed and low rank representation based subspace clustering is a very promising and efficient subspace clustering algorithm. Low rank representation method seeks ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 43 شماره
صفحات -
تاریخ انتشار 2014